Database Systems 236363

Functional Dependencies

Database Design Process

- How do we design the relations schemas?
 - Option 1:
 - Directly from the ER diagram
 - Option 2:
 - Identify all attributes coming out of the system's requirement analysis. That is, all minimal units of data items, such as student name, course number, course name, etc.
 - We create a single "super schema" including all attributes, or a few large schemas
 - We then iteratively combine and split the schemas to obtain a "good representation"

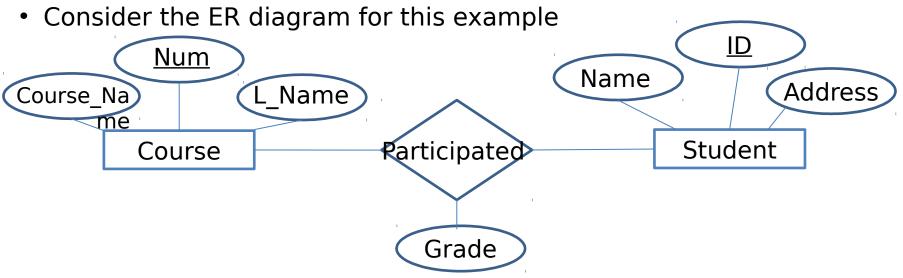
Database Design Process continued

- During the design process, it is important to verify that the following holds:
 - The entire data is stored and can be represented
 - All constraints on the data are preserved, e.g., keys
 - No unnecessary redundancy
 - Queries over the database can be implemented efficiently

Schema Decompositionreminder

- Recall the courses and students example from the introduction lecture (first week)
 - For each student we wish to save the student name, student id, and address
 - For each course we wish to store the course name, course number, and lecturer
 - For each occurrence of a student taking a course, we would like to record the identifying information about this event plus the final grade
 - As mention in the first lecture, saving a single student name, student id, address, course number, course name, lecturer, final grade schema is inefficient and leads to consistency problems
 - Hence, we prefer breaking this into several smaller schemas

Continued



- This diagram implies 3 schemas:
 - Course(Course_Name,<u>Num</u>,L_Name) Student(Name,<u>ID</u>,Address)
 Participated(<u>Num,ID</u>,Grade)
- As discussed in the first lecture, this decomposition is based on some implicit simplifying assumptions, but for the purpose of this discussion it will do

Functional Dependencies -Informally

- The ER diagram for the students and courses implies some conditions that must hold in the database
 - The ID is a primary key for the student entity
 - Hence, the name and address attributes are uniquely defined for each value of ID
 - The course name and lecturer are uniquely defined by the course number
 - For each combination of course number and student ID there is a single value of final grade (if exists)
- In general, a functional dependency exists whenever a subset of the attributes uniquely define the values of another subset of attributes

ERD Represents Functional Dependencies

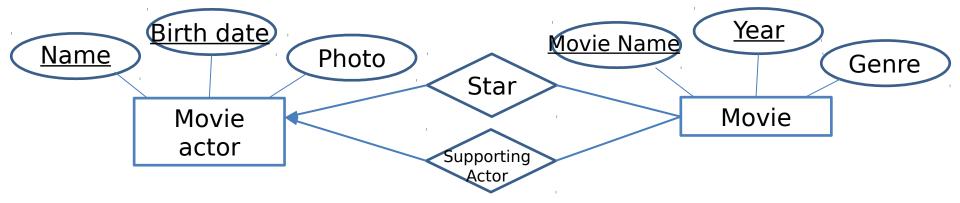
- The ER diagram defines functional dependencies
- When deciding on the entity sets and relationship sets, we also define the database attributes
- The primary keys and the relations between entity sets and relationship sets define functional dependencies that the database fulfills
- Yet, there may be additional dependencies that the ER diagram cannot express, e.g., that there are additional (non-primary) keys for a given entity set

Are the Schema Obtained by ERD Always the Best?

- In the next slides, we will learn formal measures that evaluate how good a given decomposition into schemas is
- We will see that sometimes ERD based schemas are good and other times they are not
- We will also learn how to design schemas in order to optimize these measures

Another Comment

- Treating all attributes as one large schema that is being decomposed during the design phase is sometimes also problematic
 - For example, consider the following diagram



- If we derive the schema only by focusing on attributes, we will not be able to distinguish between the relationship sets "Star" and "Supporting Actor"
- Further, the analysis of the functional dependency between them will also be incorrect

Anomalies in Inadequate Schema Design

- Recall the problems arising from treating the entire database as a single large schema
 - Redundancy
 - Useless repetitions, e.g., no point in writing the student's address for each course s/he is registered to
 - Complicates updates
 - Each change, e.g., in a student's address, would require updating multiple rows in the database
 - Representation difficulties
 - There are certain situations that are hard to represent this way, e.g., a student that did not take any course
 - Sometimes null values can help with this, but they add their own complexities and so better be avoided

To Decompose or not to Decompose

- Schemas decomposition
 - Enables solving the anomalies mentioned before
 - Reduces the chances of inconsistencies, by eliminating redundancies in the database
- However...
 - By decomposing the schemas, many queries would require performing joins
 - Why is this considered harmful?
 - Having many schemas may complicate the writing of queries and applications

Dependencies and Decomposition

- First, we will study how functional dependencies are identified and derived
- Next, we will learn how to perform decompositions based on functional dependencies
 - The basic idea is that certain dependencies in a given schema may indicate inefficiencies in it and therefore that it is better to further decompose it into smaller schemas
- After that, we will explore normal forms what they are and how to obtain them
 - For a given decomposition into schemas, the higher the order of the normal form is, the better the design is

Functional Dependencies

The theory behind designing schemas for databases

Functional Dependencies

- Functional dependencies for a given relation are discovered from analyzing the system's requirements
- For a relation R with attributes A and B, we say that B is functionally dependent on A, denoted A→B if for every two records in R in which the value of A is the same, the value of B is also the same

 $-\forall x_1, x_2 \in R$, if $x_1[A] = x_2[A]$ then $x_1[B] = x_2[B]$

 Note that we are interested in functional dependencies that arise from the system's analysis rather than from the specific content of R

Functional Dependencies - continued

- For given properties A_1, A_2, B , denote $A_1A_2 \rightarrow B$ the following dependency
 - In every two records of R such that the values of A_1 and A_2 are the same, the values of B are the also same
 - Notice that $A_1A_2 \rightarrow B$ does not impose any restriction on records in which only the values of A_1 or only the values of A_2 are the same
- We denote $A_1A_2 \rightarrow B_1B_2$ the fact that both $A_1A_2 \rightarrow B_1$ and $A_1A_2 \rightarrow B_2$ hold for a given set of properties A_1A_2 and B_1B_2
- Further, we can generalize $A_1...A_k \rightarrow B_1...B_1$ to denote that , $\forall x_1, x_2 \in R$

if for all $1 \le i \le k x_1[A_i] = x_2[A_i]$ then for all $1 \le j \le l x_1[B_j] = x_2[B_j]$

Example

S	С	т
Bart	Math	Mrs. Krabappel
Lisa	Math	Mrs. Krabappel
Lisa	Logic	Ms. Hoover

- This relation satisfies $C \rightarrow T$ but does not satisfy $S \rightarrow T$
- In general, a schema in which for a given relation
 R there are two properties A,B such that A→B but
 A is not a key is problematic
 - Is the schema in the example problematic?

A Dependency Following From a Set of Dependencies

- Given a set of functional dependencies F={X₁→Y₁, ...,X_n→Y_n} where each X_i and Y_i is a set of properties of the relation R, a dependency X→Y follows from F (denoted F⊨X→Y) if every relation with the corresponding properties that satisfies all dependencies in F also satisfies X→Y
- Example
 - Given a schema R=(A,B,C) and a set of dependencies $F=\{A\rightarrow B,B\rightarrow C\}$, the dependency $A\rightarrow C$ follows from F
 - This is because for any two records in which the properties in A are the same, the properties of B are the same (due to $A \rightarrow B$) and since the properties in B are the same, so are the properties in C (due to $B \rightarrow C$)

Keys

- Given a schema R and a set of functional dependencies
 F:
 - A superkey of R is a set of attributes $X \subseteq R$ such that $F \models X \rightarrow R$
 - -A key of R is a set of attributes $X \subseteq R$ such:
 - 1. X is a superkey of R
 - 2. No proper subset of X is a superkey of R
- A key is also called a minimal key or an admissible key
 - As hinted before, keys are useful in identifying problematic schemas, e.g., the existence of a dependency $X \rightarrow Y$ in which X is not a key
- Are there relations that have no key?

Inferring Functional Dependencies

- When designing a database, it is important to know all functional dependencies in the system, both the ones that can be discovered directly from the system analysis F and the ones that follow from F
- In order to know whether F⊨X→Y holds, we could look for a counter example of a relation that satisfies F but not X→Y
 If after scanning the entire database we are unable to find such an example, we conclude that F⊨X→Y holds
- However, scanning the infinite set of all possible values of the relations is not feasible
 - Hence, we will focus on learning how to infer all functional dependencies that follow from F without scanning infinite sets

Trivial Functional Dependencies

- If A is an attribute of a relation R, then regardless of the current values in the database, A→A always hold
 - This is because there can be no two records $r,s \in R$ for which the values of A are both identical and different
- Generally, if $X = \{A_1, ..., A_k\}$ is a set of attributes of R, then $X \rightarrow A_i$ will always hold for every $1 \le i \le k$ – Hence, for every subset $Y \subseteq X$ the functional dependency
 - $X \rightarrow Y$ also holds
- This is called <u>reflexivity</u>

An Example – the Insertion Rule

- Claim: If R is a relation whose content satisfies X→Y and let Z be any set of attributes, then R also satisfies the functional dependency XZ→YZ
 - In other words, the dependency XZ \rightarrow YZ follows from the dependency X \rightarrow Y (X \rightarrow Y \models XZ \rightarrow YZ)
- Notice that we use the notation XZ to denote the unification of the sets of attributes in X and Z

Proof of the Insertion Rule

- Assume b.w.o.c. that there exist a relation R and attribute sets X,Y,Z such that R satisfies X→Y but does not satisfy XZ→YZ
 - Hence, there are records $r,s \in R$ whose values are the same in all attributes of XZ but differ in at least one attribute A of YZ
 - If A \in Y then r and s agree on all attributes of X but not on all attributes in Y, meaning that X \rightarrow Y does not hold a contradiction
 - If A∈Z then by assumption they cannot obtain a different value on A since they have the same values on all attributes in XZ – a contradiction
 - This covers all options for A. Hence, there can be no relation that satisfies the assumption and the claim holds

Another Example -Transitivity

- If X,Y,Z are sets of attributes of a relation R, then $X \rightarrow Z$ follows from the combination of $X \rightarrow Y$ and $Y \rightarrow Z$
 - Proof concept:
 - As mentioned before, we show that if the contents of R satisfies both X→Y and Y→Z, then for every two records r,s∈R, if the values of their X attributes are the same then the values of their Z attributes are also the same

Armstrong's Axioms

- The three inference rules we have seen are called Armstrong's axioms:
 - -**<u>Reflexivity</u>**: if X is a set of attributes of R and Y \subseteq X, then X \rightarrow Y
 - Insertion: if R satisfies $X \rightarrow Y$ for two sets of attributes X,Y of R, then for every set of attributes Z in R it holds that $XZ \rightarrow YZ$
 - **Transitivity:** if $X \rightarrow Y$ and $Y \rightarrow Z$ both hold for a relation R, then $X \rightarrow Z$ also holds
- For a set of dependencies F and another dependency X→Y, we say that X→Y can be deduced from F, denoted F⊢X→Y, if X→Y can be inferred from F using only Armstrong's axioms

Soundness and Completeness

Soundness

- Every functional dependency $X \rightarrow Y$ that can be inferred from a set of functional dependencies F using a finite number of usages of Armstrong's axioms indeed follows from F
 - The soundness proof follows from our proof that when using each of the axioms one can infer only a dependency that follows from F
 - We then apply induction on the number of axiom usages

Completeness

- Every functional dependency $X \rightarrow Y$ that follows from F can be inferred from F using a finite number of usages of Armstrong's axioms
 - The proof is given later

$$\mathsf{F} \vdash \mathsf{X} {\rightarrow} \mathsf{Y} \iff \mathsf{F} \models \mathsf{X} {\rightarrow} \mathsf{Y}$$

Additional Inference Rules

 The following inference rules follow from Armstrong's axioms (and can be inferred from them):

- Unification:

- If $X \rightarrow Y$ and $X \rightarrow Z$ both hold then $X \rightarrow YZ$ holds
- Split:
 - If $X \rightarrow YZ$ holds then $X \rightarrow Y$ and $X \rightarrow Z$ both hold

– Pseudo-transitivity:

• If $X \rightarrow Y$ and $YW \rightarrow Z$ both hold then $XW \rightarrow Z$ holds

Proof of the Unification Rule

- We will prove using Armstrong's axioms the following claim:
 - If $X \rightarrow Y$ and $X \rightarrow Z$ both hold then $X \rightarrow YZ$ holds
- Proof
 - From $X \rightarrow Y$ and the insertion rule we have that $XZ \rightarrow YZ$ holds
 - From $X \rightarrow Z$ and the insertion rule we have that $X \rightarrow XZ$ holds (since XX = X)
 - From X \rightarrow XZ and XZ \rightarrow YZ and the transitivity rule we have X \rightarrow YZ

Closure of an Attributes Set

 For a relation R, a functional dependency set F, and a set of attributes X, denote by X_F⁺ the set of attributes A of R for which F⊢(X→A) holds

– When F is obvious from the context, we simply write X_{+}

Claim

– For each set Y of attributes of R, $F \vdash (X \rightarrow Y)$ holds iff $Y \subseteq X_{F}^{+}$ holds

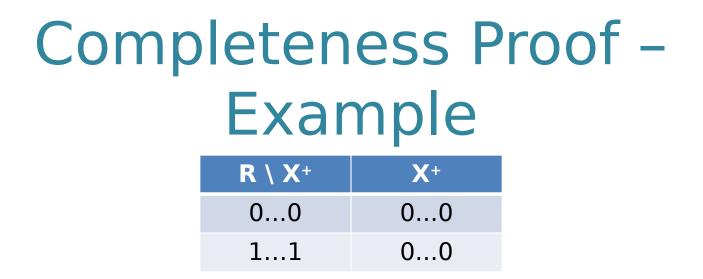
- Proof
 - If $Y \subseteq X_{F^+}$, then for each $A \in Y$, $F \vdash (X \rightarrow A)$ holds and by unification we have that $F \vdash (X \rightarrow Y)$
 - If $F \vdash (X \rightarrow Y)$, then by the split rule for each $A \in Y$, $F \vdash (X \rightarrow A)$ holds, meaning that $Y \subseteq X_{F^+}$
- Corollary

- For each set of attributes X, $(X_{F^+})_{F^+} = X_{F^+}$

Completeness of Armstrong's Axioms

- For the completeness proof, assume that for a set of dependencies F, F ⊬ (X→Y) holds
- We will show that F ⊭ (X→Y) holds by constructing possible content for R that satisfies all the dependencies in F but does not satisfy X→Y
 - From the previous claim, if $F \not\vdash (X \rightarrow Y)$ then $Y \subseteq X_{F^+}$ does not hold, meaning that there is an attribute $A \in Y$ such that does not belong to X_{F^+}
 - We will now create two records: the first will have "0" in all the attributes of R while the other will have "0" in all attributes of X_{F^+} and "1" on all other attributes of R
 - Both records agree on all attributes of $X_{\ensuremath{\mathsf{F}^+}}$ and therefore also on all attributes of X
 - Yet, they do not agree on A and thus R does not satisfy $X \rightarrow Y$
 - On the other hand, R satisfies F; otherwise, it would contradict the claim that $(X_{F^+})_{F^+} = X_{F^+}$

Q.E.D.



In this relation, if there is a dependency that is violated, then there is one of the form W $\to A$ where W \subseteq X^+ and A \in R \setminus X^+

If such a dependency $W \rightarrow A$ exists, then $A \in (X^+)^+$

 $A \in \mathbb{R} \setminus X^+$ is a contradiction to $X^+ = (X^+)^+$

A Simple Algorithm for Computing the Closure

- The closure of an attributes set has an important role in the design of relational schemas
 - For example, X is a superkey of R iff $X^+=R$
 - Thus, we need an algorithm to compute it
- The following simple algorithm computes the closure X_F^+ for a given dependency set F attributes set X A_L ist := X Repeat For every $Y \rightarrow Z \in F$ do
- Claim:
 - The algorithm always terminates $A_List := A_List \cup Z$ and returns the correct ansv Until no change to A_List

Return A_List

If $Y \subseteq A$ _List then

Execution Example

- Compute the closure of X={A,B} for the dependency set F={A→C, BC→A, AC→D, CE→F }
 - Initialization: A_List={A,B}
 - From $A \rightarrow C$, we get $A_List = \{A, B, C\}$
 - From AC \rightarrow D, we get A_List={A,B,C,D}
 - The other dependencies do not add anything
 - The final result is $X_{F^+} = \{ A, B, C, D \}$

An Improved Closure Algorithm

 The following algorithm ensures that the running time will be linear with the length of the input (according to Beeri-Bernstein theorem)

 $A_List := X$ $F_List := F$ Repeat For every $Y \rightarrow Z \in F$ _List do $Y := Y \setminus A_List$ If $Y = \emptyset$ then A_List := A_List \cup Z Until no change to A_List Return A List

Closure of Dependency Sets

 For a dependency set F over a set of attributes U or a relation R[U], denote F+ the set of all dependencies implied by F

– This set is called the closure of $\ensuremath{\mathsf{F}}$

- The closures of dependency set and attributes sets are used to define criteria for the goodness of a relation split
- Yet, the size of F+ could be exponential in the size of F

 We need to worry about this when we design protocols for
 finding splits

Closure Comparisons

- Given a dependency set F and a new dependency $X \rightarrow Y$, we can compute whether $X \rightarrow Y \in F^+$ even without explicitly computing F+
 - For this, we can compute X_{F^+} , which runs in linear time, and then check if $Y{\subseteq}X_{F^+}$
- Consequently, given two sets of dependencies F and G, we can verify in polynomial time whether $F^+=G^+$
 - First, we check for each dependency in G whether it follows from ${\sf F}$
 - If so, we deduce that $G^{+\subseteq}(F^{+})^{+}=F^{+}$
 - Similarly, we can verify if $F^+\subseteq G^+$

Covers and Minimal Covers

- A dependency set G is called a *cover* of F if $G^+ = F^+$ - As we saw, this can be done in polynomial time
- A cover G of F is said to be *minimal* if the following additional requirements are met
 - All dependencies in G are of the form $X \rightarrow A$ (where A is a single attribute)
 - No dependency in G can be inferred from another dependency in G
 - There does not exists in G a dependency $X \rightarrow A$ such that there exists a proper subset Y of X for which $Y \rightarrow A \in G^+ = F^+$
- For each dependency set F there is at least one minimal cover whose size is polynomial in F
- It is possible that there will be multiple minimal covers for the same dependency set F
 - Note that each minimal cover can potentially be of different size, i.e., "minimal" does not imply anything about the size of the cover

The Basic Idea for Finding Minimal Covers

- Given F:
 - 1. Split all dependencies such that the right side of each dependency will include a single attribute
 - 2. Eliminate from all added dependencies all attributes that are redundant (from the left side)
 - 3. Eliminate all dependencies that can be deduced from others
- Notice:
 - Eliminating an attribute from the right side of a functional dependency may reduce F
 - We should verify that after the change, the dependency remains
 - Eliminating an attribute from the left side of a functional dependency may increase F
 - We should verify that the resulting dependency already existed before the change
- An exact algorithm will be given in the recitation

Additional Dependency Types

- Relational schemas may include additional dependency types
 - Multivalued dependencies
 - Here, there may be multiple different values of Y for the same values of X, yet the values of X fix the set of values for Y
 - Inclusion dependencies
 - This types of dependency relates between the values of attributes in two relations in the schema
 - E.g., in the train operation π_{S_Name} (Serves) $\subseteq \pi_{S_Name}$ (Station)
- In this course, we focus on design considerations that follow from functional dependencies only