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Functional Dependencies



Database Design Process

• How do we design the relations schemas?
– Option 1: 

• Directly from the ER diagram

– Option 2: 
• Identify all attributes coming out of the system’s 

requirement analysis. That is, all minimal units of data 
items, such as student name, course number, course 
name, etc.

• We create a single “super schema” including all attributes, 
or a few large schemas

• We then iteratively combine and split the schemas to 
obtain a “good representation”



Database Design Process - 
continued

• During the design process, it is important 
to verify that the following holds:
– The entire data is stored and can be 

represented
– All constraints on the data are preserved, e.g., 

keys
– No unnecessary redundancy
– Queries over the database can be 

implemented efficiently



Schema Decomposition- 
reminder

• Recall the courses and students example from the 
introduction lecture (first week)
– For each student we wish to save the student name, student id, 

and address
– For each course we wish to store the course name, course 

number, and lecturer
– For each occurrence of a student taking a course, we would like 

to record the identifying information about this event plus the 
final grade

– As mention in the first lecture, saving a single student name, 
student id, address, course number, course name, lecturer, final 
grade schema is inefficient and leads to consistency problems

– Hence, we prefer breaking this into several smaller schemas



Continued
• Consider the ER diagram for this example

• This diagram implies 3 schemas:
– Course(Course_Name,Num,L_Name)  Student(Name,ID,Address)  

Participated(Num,ID,Grade)

• As discussed in the first lecture, this decomposition is based on 
some implicit simplifying assumptions, but for the purpose of this 
discussion it will do
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Functional Dependencies - 
Informally

• The ER diagram for the students and courses implies 
some conditions that must hold in the database
– The ID is a primary key for the student entity
• Hence, the name and address attributes are uniquely defined for 

each value of ID

– The course name and lecturer are uniquely defined by the 
course number

– For each combination of course number and student ID 
there is a single value of final grade (if exists)

• In general, a functional dependency exists whenever 
a subset of the attributes uniquely define the values 
of another subset of attributes



ERD Represents Functional 
Dependencies

• The ER diagram defines functional dependencies

• When deciding on the entity sets and relationship sets, 
we also define the database attributes

• The primary keys and the relations between entity sets 
and relationship sets define functional dependencies 
that the database fulfills

• Yet, there may be additional dependencies that the ER 
diagram cannot express, e.g., that there are additional 
(non-primary) keys for a given entity set



Are the Schema Obtained by ERD 
Always the Best?

• In the next slides, we will learn formal 
measures that evaluate how good a given 
decomposition into schemas is

• We will see that sometimes ERD based 
schemas are good and other times they are 
not

• We will also learn how to design schemas in 
order to optimize these measures



Another Comment

• Treating all attributes as one large schema that is being 
decomposed during the design phase is sometimes also 
problematic
– For example, consider the following diagram

– If we derive the schema only by focusing on attributes, we will not 
be able to distinguish between the relationship sets “Star” and 
“Supporting Actor”

– Further, the analysis of the functional dependency between them 
will also be incorrect
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Anomalies in Inadequate Schema 
Design

• Recall the problems arising from treating the 
entire database as a single large schema
– Redundancy
• Useless repetitions, e.g., no point in writing the student’s 

address for each course s/he is registered to

– Complicates updates
• Each change, e.g., in a student’s address, would require 

updating multiple rows in the database

– Representation difficulties
• There are certain situations that are hard to represent this 

way, e.g., a student that did not take any course
• Sometimes null values can help with this, but they add their 

own complexities and so better be avoided



To Decompose or not to Decompose

• Schemas decomposition
– Enables solving the anomalies mentioned before
– Reduces the chances of inconsistencies, by 

eliminating redundancies in the database

• However…
– By decomposing the schemas, many queries 

would require performing joins
• Why is this considered harmful?

– Having many schemas may complicate the 
writing of queries and applications



Dependencies and 
Decomposition

• First, we will study how functional dependencies are 
identified and derived

• Next, we will learn how to perform decompositions 
based on functional dependencies
– The basic idea is that certain dependencies in a given schema 

may indicate inefficiencies in it and therefore that it is better 
to further decompose it into smaller schemas

• After that, we will explore normal forms – what they are 
and how to obtain them
– For a given decomposition into schemas, the higher the order 

of the normal form is, the better the design is



Functional Dependencies

The theory behind designing 
schemas for databases



Functional Dependencies

• Functional dependencies for a given relation are 
discovered from analyzing the system’s requirements

• For a relation R with attributes A and B, we say that B 
is functionally dependent on A, denoted A→B if for 
every two records in R in which the value of A is the 
same, the value of B is also the same
–x1,x2R, if x1[A]=x2[A] then x1[B]=x2[B]

• Note that we are interested in functional 
dependencies that arise from the system’s analysis 
rather than from the specific content of R



Functional Dependencies - 
continued

• For given properties A1,A2,B, denote A1A2→B the following 
dependency
– In every two records of R such that the values of A1 and A2 are 

the same, the values of B are the also same
• Notice that A1A2→B does not impose any restriction on records in which 

only the values of A1 or only the values of A2are the same

• We denote A1A2→B1B2 the fact that both A1A2→B1 and 
A1A2→B2 hold for a given set of properties A1A2 and B1B2

• Further, we can generalize A1...Ak→B1...Bl to denote that

x1,x2R, 
if for all 1ik x1[Ai]=x2[Ai] then for all 1 jl x1[Bj]=x2[Bj]



Example

• This relation satisfies C→T but does not satisfy 
S→T

• In general, a schema in which for a given relation 
R there are two properties A,B such that A→B but 
A is not a key is problematic
– Is the schema in the example problematic?

S C T

Bart Math Mrs. Krabappel

Lisa Math Mrs. Krabappel

Lisa Logic Ms. Hoover



A Dependency Following From a 
Set of Dependencies

• Given a set of functional dependencies F={X1→Y1,
…,Xn→Yn} where each Xi and Yi is a set of properties of 
the relation R, a dependency X→Y follows from F 
(denoted F⊨XY) if every relation with the 
corresponding properties that satisfies all 
dependencies in F also satisfies X→Y

• Example
– Given a schema R=(A,B,C) and a set of dependencies 

F={A→B,B→C}, the dependency A→C follows from F
• This is because for any two records in which the properties in A 

are the same, the properties of B are the same (due to A→B) and 
since the properties in B are the same, so are the properties in C 
(due to B→C)



Keys

• Given a schema R and a set of functional dependencies 
F:
– A superkey of R is a set of attributes XR such that F ⊨ XR
– A key of R is a set of attributes XR such:

1. X is a superkey of R
2. No proper subset of X is a superkey of R

• A key is also called a minimal key or an admissible key
– As hinted before, keys are useful in identifying problematic 

schemas, e.g., the existence of a dependency XY in which X 
is not a key

• Are there relations that have no key?



Inferring Functional 
Dependencies

• When designing a database, it is important to know all 
functional dependencies in the system, both the ones that 
can be discovered directly from the system analysis F and 
the ones that follow from F

• In order to know whether F⊨XY holds, we could look for a 
counter example of a relation that satisfies F but not XY
– If after scanning the entire database we are unable to find such an 

example, we conclude that F⊨XY holds

• However, scanning the infinite set of all possible values of 
the relations is not feasible
– Hence, we will focus on learning how to infer all functional 

dependencies that follow from F without scanning infinite sets



Trivial Functional 
Dependencies

• If A is an attribute of a relation R, then regardless of 
the current values in the database, AA always hold
– This is because there can be no two records r,sR for 

which the values of A are both identical and different

• Generally, if X={A1,...,Ak} is a set of attributes of R, 
then XAi will always hold for every 1ik
– Hence, for every subset YX the functional dependency 

XY also holds

• This is called reflexivity  



An Example – the Insertion 
Rule

• Claim: If R is a relation whose content 
satisfies XY and let Z be any set of 
attributes, then R also satisfies the 
functional dependency XZYZ
– In other words, the dependency XZYZ follows 

from the dependency XY (XY⊨XZYZ)

• Notice that we use the notation XZ to 
denote the unification of the sets of 
attributes in X and Z



Proof of the Insertion Rule

• Assume b.w.o.c. that there exist a relation R and 
attribute sets X,Y,Z such that R satisfies XY but does 
not satisfy XZYZ
– Hence, there are records r,sR whose values are the same in 

all attributes of XZ but differ in at least one attribute A of YZ
– If AY then r and s agree on all attributes of X but not on all 

attributes in Y, meaning that XY does not hold – a 
contradiction

– If AZ then by assumption they cannot obtain a different 
value on A since they have the same values on all attributes 
in XZ – a contradiction

– This covers all options for A. Hence, there can be no relation 
that satisfies the assumption and the claim holds



Another Example - 
Transitivity

• If X,Y,Z are sets of attributes of a relation 
R, then XZ follows from the combination 
of XY and YZ
– Proof concept: 

• As mentioned before, we show that if the contents of 
R satisfies both XY and YZ, then for every two 
records r,sR, if the values of their X attributes are 
the same then the values of their Z attributes are 
also the same



Armstrong’s Axioms

• The three inference rules we have seen are called 
Armstrong’s axioms:

– Reflexivity: if X is a set of attributes of R and YX, then XY

– Insertion: if R satisfies XY for two sets of attributes X,Y of R, 
then for every set of attributes Z in R it holds that XZYZ

– Transitivity: if XY and YZ both hold for a relation R, then XZ 
also holds

• For a set of dependencies F and another dependency XY, 
we say that XY can be deduced from F, denoted F⊢XY, if 
XY can be inferred from F using only Armstrong’s axioms



Soundness and 
Completeness

• Soundness
– Every functional dependency XY that can be inferred 

from a set of functional dependencies F using a finite 
number of usages of Armstrong’s axioms indeed follows 
from F
• The soundness proof follows from our proof that when using each 

of the axioms one can infer only a dependency that follows from F
• We then apply induction on the number of axiom usages

• Completeness
– Every functional dependency XY that follows from F can 

be inferred from F using a finite number of usages of 
Armstrong’s axioms
• The proof is given later F ⊢ XY    F ⊨ XY



Additional Inference Rules

• The following inference rules follow from 
Armstrong’s axioms (and can be inferred 
from them):
– Unification:

• If XY and XZ both hold then XYZ holds

– Split:
• If XYZ holds then XY and XZ both hold

– Pseudo-transitivity:
• If XY and YWZ both hold then XWZ holds



Proof of the Unification Rule

• We will prove using Armstrong’s axioms the 
following claim:
– If XY and XZ both hold then XYZ holds

• Proof
– From XY and the insertion rule we have that XZYZ 

holds
– From XZ and the insertion rule we have that XXZ 

holds (since XX=X)
– From XXZ and XZYZ and the transitivity rule we have 

XYZ

Q.E.D.



Closure of an Attributes Set
• For a relation R, a functional dependency set F, and a set of 

attributes X, denote by XF+  the set of attributes A of R for which 
F⊢(XA) holds
–When F is obvious from the context, we simply write X+

• Claim
– For each set Y of attributes of R, F⊢(XY)  holds iff YXF+ holds

• Proof
– If YXF+, then for each AY, F⊢(XA) holds and by unification we have 

that F⊢(XY)
– If F⊢(XY), then by the split rule for each AY, F⊢(XA) holds, meaning 

that YXF+

• Corollary
– For each set of attributes X, (XF+)F+ = XF+



Completeness of Armstrong’s 
Axioms

• For the completeness proof, assume that for a set of 
dependencies F, F ⊬ (XY) holds

• We will show that F ⊭ (XY) holds by constructing possible 
content for R that satisfies all the dependencies in F but does 
not satisfy XY
– From the previous claim, if F ⊬ (XY) then YXF+ does not hold, 

meaning that there is an attribute AY such that does not belong to XF+

–We will now create two records: the first will have “0” in all the 
attributes of R while the other will have “0” in all attributes of XF+ and 
“1” on all other attributes of R

– Both records agree on all attributes of XF+ and therefore also on all 
attributes of X

– Yet, they do not agree on A and thus R does not satisfy XY
– On the other hand, R satisfies F; otherwise, it would contradict the claim 

that (XF+)F+ = XF+

Q.E.D.



Completeness Proof – 
Example
R \ X+ X+

0...0 0...0

1…1 0...0

In this relation, if there is a dependency that is violated, 
then there is one of the form WA where W  X+  and 
AR \ X+

If such a dependency WA exists, then A(X+)+

AR \ X+ is a contradiction to X+ = (X+)+



A Simple Algorithm for Computing the 
Closure

• The closure of an attributes set has an important 
role in the design of relational schemas
– For example, X is a superkey of R iff X+=R
– Thus, we need an algorithm to compute it

• The following simple algorithm                              
  computes the closure XF+ for a                             
           given dependency set F and                       
       attributes set X

• Claim:
– The algorithm always terminates                                   

        and returns the correct answer 

A_List := X

Repeat

   For every YZF do

      If YA_List then

         A_List := A_ListZ

Until no change to A_List

Return A_List



Execution Example

• Compute the closure of X={A,B} for the 
dependency set F={AC, BCA, ACD, CEF }
– Initialization: A_List={A,B}

– From AC, we get A_List={A,B,C}

– From ACD, we get A_List={A,B,C,D}

– The other dependencies do not add anything

– The final result is XF+ = { A,B,C,D }



An Improved Closure 
Algorithm

• The following 
algorithm ensures 
that the running 
time will be linear 
with the length of 
the input 
(according to Beeri-
Bernstein theorem)

A_List := X

F_List := F

Repeat

   For every YZF_List do

      Y := Y \ A_List

      If Y= then

         A_List := A_ListZ

Until no change to A_List

Return A_List



Closure of Dependency Sets

• For a dependency set F over a set of attributes U or a 
relation R[U], denote F+ the set of all dependencies 
implied by F
– This set is called the closure of F

• The closures of dependency set and attributes sets 
are used to define criteria for the goodness of a 
relation split

• Yet, the size of F+ could be exponential in the size of F
–We need to worry about this when we design protocols for 

finding splits



Closure Comparisons

• Given a dependency set F and a new dependency 
XY, we can compute whether XYF+ even without 
explicitly computing F+

– For this, we can compute XF+, which runs in linear time, 
and then check if YXF+

• Consequently, given two sets of dependencies F and 
G, we can verify in polynomial time whether F+=G+

– First, we check for each dependency in G whether it 
follows from F
• If so, we deduce that G+(F+)+=F+

– Similarly, we can verify if F+G+



Covers and Minimal Covers
• A dependency set G is called a cover of F if G+ = F+

– As we saw, this can be done in polynomial time

• A cover G of F is said to be minimal if the following additional 
requirements are met
– All dependencies in G are of the form XA (where A is a single attribute)
– No dependency in G can be inferred from another dependency in G
– There does not exists in G a dependency XA such that there exists a 

proper subset Y of X for which YAG+=F+

• For each dependency set F there is at least one minimal cover 
whose size is polynomial in F

• It is possible that there will be multiple minimal covers for the 
same dependency set F
– Note that each minimal cover can potentially be of different size, i.e., 

“minimal” does not imply anything about the size of the cover



The Basic Idea for Finding Minimal 
Covers

• Given F:
1. Split all dependencies such that the right side of each dependency 

will include a single attribute
2. Eliminate from all added dependencies all attributes that are 

redundant (from the left side)
3. Eliminate all dependencies that can be deduced from others

• Notice:
– Eliminating an attribute from the right side of a functional 

dependency may reduce F
• We should verify that after the change, the dependency remains

– Eliminating an attribute from the left side of a functional dependency 
may increase F
• We should verify that the resulting dependency already existed before the 

change

• An exact algorithm will be given in the recitation



Additional Dependency 
Types

• Relational schemas may include additional 
dependency types
–Multivalued dependencies
• Here, there may be multiple different values of Y for the same 

values of X, yet the values of X fix the set of values for Y

– Inclusion dependencies
• This types of dependency relates between the values of 

attributes in two relations in the schema
• E.g., in the train operation S_Name (Serves)  S_Name (Station)

• In this course, we focus on design considerations 
that follow from functional dependencies only
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