
Database Systems
236363

Functional Dependencies

Database Design Process

• How do we design the relations schemas?
– Option 1:

• Directly from the ER diagram

– Option 2:
• Identify all attributes coming out of the system’s

requirement analysis. That is, all minimal units of data
items, such as student name, course number, course
name, etc.

• We create a single “super schema” including all attributes,
or a few large schemas

• We then iteratively combine and split the schemas to
obtain a “good representation”

Database Design Process -
continued

• During the design process, it is important
to verify that the following holds:
– The entire data is stored and can be

represented
– All constraints on the data are preserved, e.g.,

keys
– No unnecessary redundancy
– Queries over the database can be

implemented efficiently

Schema Decomposition-
reminder

• Recall the courses and students example from the
introduction lecture (first week)
– For each student we wish to save the student name, student id,

and address
– For each course we wish to store the course name, course

number, and lecturer
– For each occurrence of a student taking a course, we would like

to record the identifying information about this event plus the
final grade

– As mention in the first lecture, saving a single student name,
student id, address, course number, course name, lecturer, final
grade schema is inefficient and leads to consistency problems

– Hence, we prefer breaking this into several smaller schemas

Continued
• Consider the ER diagram for this example

• This diagram implies 3 schemas:
– Course(Course_Name,Num,L_Name) Student(Name,ID,Address)

Participated(Num,ID,Grade)

• As discussed in the first lecture, this decomposition is based on
some implicit simplifying assumptions, but for the purpose of this
discussion it will do

StudentCourse Participated

IDNum

Grade

AddressName
Course_Na

me
L_Name

Functional Dependencies -
Informally

• The ER diagram for the students and courses implies
some conditions that must hold in the database
– The ID is a primary key for the student entity
• Hence, the name and address attributes are uniquely defined for

each value of ID

– The course name and lecturer are uniquely defined by the
course number

– For each combination of course number and student ID
there is a single value of final grade (if exists)

• In general, a functional dependency exists whenever
a subset of the attributes uniquely define the values
of another subset of attributes

ERD Represents Functional
Dependencies

• The ER diagram defines functional dependencies

• When deciding on the entity sets and relationship sets,
we also define the database attributes

• The primary keys and the relations between entity sets
and relationship sets define functional dependencies
that the database fulfills

• Yet, there may be additional dependencies that the ER
diagram cannot express, e.g., that there are additional
(non-primary) keys for a given entity set

Are the Schema Obtained by ERD
Always the Best?

• In the next slides, we will learn formal
measures that evaluate how good a given
decomposition into schemas is

• We will see that sometimes ERD based
schemas are good and other times they are
not

• We will also learn how to design schemas in
order to optimize these measures

Another Comment

• Treating all attributes as one large schema that is being
decomposed during the design phase is sometimes also
problematic
– For example, consider the following diagram

– If we derive the schema only by focusing on attributes, we will not
be able to distinguish between the relationship sets “Star” and
“Supporting Actor”

– Further, the analysis of the functional dependency between them
will also be incorrect

Movie
actor

Name
Birth date

Photo

Movie

Movie Name
Year

Genre
Star

Supporting
Actor

Anomalies in Inadequate Schema
Design

• Recall the problems arising from treating the
entire database as a single large schema
– Redundancy
• Useless repetitions, e.g., no point in writing the student’s

address for each course s/he is registered to

– Complicates updates
• Each change, e.g., in a student’s address, would require

updating multiple rows in the database

– Representation difficulties
• There are certain situations that are hard to represent this

way, e.g., a student that did not take any course
• Sometimes null values can help with this, but they add their

own complexities and so better be avoided

To Decompose or not to Decompose

• Schemas decomposition
– Enables solving the anomalies mentioned before
– Reduces the chances of inconsistencies, by

eliminating redundancies in the database

• However…
– By decomposing the schemas, many queries

would require performing joins
• Why is this considered harmful?

– Having many schemas may complicate the
writing of queries and applications

Dependencies and
Decomposition

• First, we will study how functional dependencies are
identified and derived

• Next, we will learn how to perform decompositions
based on functional dependencies
– The basic idea is that certain dependencies in a given schema

may indicate inefficiencies in it and therefore that it is better
to further decompose it into smaller schemas

• After that, we will explore normal forms – what they are
and how to obtain them
– For a given decomposition into schemas, the higher the order

of the normal form is, the better the design is

Functional Dependencies

The theory behind designing
schemas for databases

Functional Dependencies

• Functional dependencies for a given relation are
discovered from analyzing the system’s requirements

• For a relation R with attributes A and B, we say that B
is functionally dependent on A, denoted A→B if for
every two records in R in which the value of A is the
same, the value of B is also the same
–x1,x2R, if x1[A]=x2[A] then x1[B]=x2[B]

• Note that we are interested in functional
dependencies that arise from the system’s analysis
rather than from the specific content of R

Functional Dependencies -
continued

• For given properties A1,A2,B, denote A1A2→B the following
dependency
– In every two records of R such that the values of A1 and A2 are

the same, the values of B are the also same
• Notice that A1A2→B does not impose any restriction on records in which

only the values of A1 or only the values of A2are the same

• We denote A1A2→B1B2 the fact that both A1A2→B1 and
A1A2→B2 hold for a given set of properties A1A2 and B1B2

• Further, we can generalize A1...Ak→B1...Bl to denote that

x1,x2R,
if for all 1ik x1[Ai]=x2[Ai] then for all 1 jl x1[Bj]=x2[Bj]

Example

• This relation satisfies C→T but does not satisfy
S→T

• In general, a schema in which for a given relation
R there are two properties A,B such that A→B but
A is not a key is problematic
– Is the schema in the example problematic?

S C T

Bart Math Mrs. Krabappel

Lisa Math Mrs. Krabappel

Lisa Logic Ms. Hoover

A Dependency Following From a
Set of Dependencies

• Given a set of functional dependencies F={X1→Y1,
…,Xn→Yn} where each Xi and Yi is a set of properties of
the relation R, a dependency X→Y follows from F
(denoted F⊨XY) if every relation with the
corresponding properties that satisfies all
dependencies in F also satisfies X→Y

• Example
– Given a schema R=(A,B,C) and a set of dependencies

F={A→B,B→C}, the dependency A→C follows from F
• This is because for any two records in which the properties in A

are the same, the properties of B are the same (due to A→B) and
since the properties in B are the same, so are the properties in C
(due to B→C)

Keys

• Given a schema R and a set of functional dependencies
F:
– A superkey of R is a set of attributes XR such that F ⊨ XR
– A key of R is a set of attributes XR such:

1. X is a superkey of R
2. No proper subset of X is a superkey of R

• A key is also called a minimal key or an admissible key
– As hinted before, keys are useful in identifying problematic

schemas, e.g., the existence of a dependency XY in which X
is not a key

• Are there relations that have no key?

Inferring Functional
Dependencies

• When designing a database, it is important to know all
functional dependencies in the system, both the ones that
can be discovered directly from the system analysis F and
the ones that follow from F

• In order to know whether F⊨XY holds, we could look for a
counter example of a relation that satisfies F but not XY
– If after scanning the entire database we are unable to find such an

example, we conclude that F⊨XY holds

• However, scanning the infinite set of all possible values of
the relations is not feasible
– Hence, we will focus on learning how to infer all functional

dependencies that follow from F without scanning infinite sets

Trivial Functional
Dependencies

• If A is an attribute of a relation R, then regardless of
the current values in the database, AA always hold
– This is because there can be no two records r,sR for

which the values of A are both identical and different

• Generally, if X={A1,...,Ak} is a set of attributes of R,
then XAi will always hold for every 1ik
– Hence, for every subset YX the functional dependency

XY also holds

• This is called reflexivity

An Example – the Insertion
Rule

• Claim: If R is a relation whose content
satisfies XY and let Z be any set of
attributes, then R also satisfies the
functional dependency XZYZ
– In other words, the dependency XZYZ follows

from the dependency XY (XY⊨XZYZ)

• Notice that we use the notation XZ to
denote the unification of the sets of
attributes in X and Z

Proof of the Insertion Rule

• Assume b.w.o.c. that there exist a relation R and
attribute sets X,Y,Z such that R satisfies XY but does
not satisfy XZYZ
– Hence, there are records r,sR whose values are the same in

all attributes of XZ but differ in at least one attribute A of YZ
– If AY then r and s agree on all attributes of X but not on all

attributes in Y, meaning that XY does not hold – a
contradiction

– If AZ then by assumption they cannot obtain a different
value on A since they have the same values on all attributes
in XZ – a contradiction

– This covers all options for A. Hence, there can be no relation
that satisfies the assumption and the claim holds

Another Example -
Transitivity

• If X,Y,Z are sets of attributes of a relation
R, then XZ follows from the combination
of XY and YZ
– Proof concept:

• As mentioned before, we show that if the contents of
R satisfies both XY and YZ, then for every two
records r,sR, if the values of their X attributes are
the same then the values of their Z attributes are
also the same

Armstrong’s Axioms

• The three inference rules we have seen are called
Armstrong’s axioms:

– Reflexivity: if X is a set of attributes of R and YX, then XY

– Insertion: if R satisfies XY for two sets of attributes X,Y of R,
then for every set of attributes Z in R it holds that XZYZ

– Transitivity: if XY and YZ both hold for a relation R, then XZ
also holds

• For a set of dependencies F and another dependency XY,
we say that XY can be deduced from F, denoted F⊢XY, if
XY can be inferred from F using only Armstrong’s axioms

Soundness and
Completeness

• Soundness
– Every functional dependency XY that can be inferred

from a set of functional dependencies F using a finite
number of usages of Armstrong’s axioms indeed follows
from F
• The soundness proof follows from our proof that when using each

of the axioms one can infer only a dependency that follows from F
• We then apply induction on the number of axiom usages

• Completeness
– Every functional dependency XY that follows from F can

be inferred from F using a finite number of usages of
Armstrong’s axioms
• The proof is given later F ⊢ XY F ⊨ XY

Additional Inference Rules

• The following inference rules follow from
Armstrong’s axioms (and can be inferred
from them):
– Unification:

• If XY and XZ both hold then XYZ holds

– Split:
• If XYZ holds then XY and XZ both hold

– Pseudo-transitivity:
• If XY and YWZ both hold then XWZ holds

Proof of the Unification Rule

• We will prove using Armstrong’s axioms the
following claim:
– If XY and XZ both hold then XYZ holds

• Proof
– From XY and the insertion rule we have that XZYZ

holds
– From XZ and the insertion rule we have that XXZ

holds (since XX=X)
– From XXZ and XZYZ and the transitivity rule we have

XYZ

Q.E.D.

Closure of an Attributes Set
• For a relation R, a functional dependency set F, and a set of

attributes X, denote by XF+ the set of attributes A of R for which
F⊢(XA) holds
–When F is obvious from the context, we simply write X+

• Claim
– For each set Y of attributes of R, F⊢(XY) holds iff YXF+ holds

• Proof
– If YXF+, then for each AY, F⊢(XA) holds and by unification we have

that F⊢(XY)
– If F⊢(XY), then by the split rule for each AY, F⊢(XA) holds, meaning

that YXF+

• Corollary
– For each set of attributes X, (XF+)F+ = XF+

Completeness of Armstrong’s
Axioms

• For the completeness proof, assume that for a set of
dependencies F, F ⊬ (XY) holds

• We will show that F ⊭ (XY) holds by constructing possible
content for R that satisfies all the dependencies in F but does
not satisfy XY
– From the previous claim, if F ⊬ (XY) then YXF+ does not hold,

meaning that there is an attribute AY such that does not belong to XF+

–We will now create two records: the first will have “0” in all the
attributes of R while the other will have “0” in all attributes of XF+ and
“1” on all other attributes of R

– Both records agree on all attributes of XF+ and therefore also on all
attributes of X

– Yet, they do not agree on A and thus R does not satisfy XY
– On the other hand, R satisfies F; otherwise, it would contradict the claim

that (XF+)F+ = XF+

Q.E.D.

Completeness Proof –
Example
R \ X+ X+

0...0 0...0

1…1 0...0

In this relation, if there is a dependency that is violated,
then there is one of the form WA where W X+ and
AR \ X+

If such a dependency WA exists, then A(X+)+

AR \ X+ is a contradiction to X+ = (X+)+

A Simple Algorithm for Computing the
Closure

• The closure of an attributes set has an important
role in the design of relational schemas
– For example, X is a superkey of R iff X+=R
– Thus, we need an algorithm to compute it

• The following simple algorithm
 computes the closure XF+ for a
 given dependency set F and
 attributes set X

• Claim:
– The algorithm always terminates

 and returns the correct answer

A_List := X

Repeat

 For every YZF do

 If YA_List then

 A_List := A_ListZ

Until no change to A_List

Return A_List

Execution Example

• Compute the closure of X={A,B} for the
dependency set F={AC, BCA, ACD, CEF }
– Initialization: A_List={A,B}

– From AC, we get A_List={A,B,C}

– From ACD, we get A_List={A,B,C,D}

– The other dependencies do not add anything

– The final result is XF+ = { A,B,C,D }

An Improved Closure
Algorithm

• The following
algorithm ensures
that the running
time will be linear
with the length of
the input
(according to Beeri-
Bernstein theorem)

A_List := X

F_List := F

Repeat

 For every YZF_List do

 Y := Y \ A_List

 If Y= then

 A_List := A_ListZ

Until no change to A_List

Return A_List

Closure of Dependency Sets

• For a dependency set F over a set of attributes U or a
relation R[U], denote F+ the set of all dependencies
implied by F
– This set is called the closure of F

• The closures of dependency set and attributes sets
are used to define criteria for the goodness of a
relation split

• Yet, the size of F+ could be exponential in the size of F
–We need to worry about this when we design protocols for

finding splits

Closure Comparisons

• Given a dependency set F and a new dependency
XY, we can compute whether XYF+ even without
explicitly computing F+

– For this, we can compute XF+, which runs in linear time,
and then check if YXF+

• Consequently, given two sets of dependencies F and
G, we can verify in polynomial time whether F+=G+

– First, we check for each dependency in G whether it
follows from F
• If so, we deduce that G+(F+)+=F+

– Similarly, we can verify if F+G+

Covers and Minimal Covers
• A dependency set G is called a cover of F if G+ = F+

– As we saw, this can be done in polynomial time

• A cover G of F is said to be minimal if the following additional
requirements are met
– All dependencies in G are of the form XA (where A is a single attribute)
– No dependency in G can be inferred from another dependency in G
– There does not exists in G a dependency XA such that there exists a

proper subset Y of X for which YAG+=F+

• For each dependency set F there is at least one minimal cover
whose size is polynomial in F

• It is possible that there will be multiple minimal covers for the
same dependency set F
– Note that each minimal cover can potentially be of different size, i.e.,

“minimal” does not imply anything about the size of the cover

The Basic Idea for Finding Minimal
Covers

• Given F:
1. Split all dependencies such that the right side of each dependency

will include a single attribute
2. Eliminate from all added dependencies all attributes that are

redundant (from the left side)
3. Eliminate all dependencies that can be deduced from others

• Notice:
– Eliminating an attribute from the right side of a functional

dependency may reduce F
• We should verify that after the change, the dependency remains

– Eliminating an attribute from the left side of a functional dependency
may increase F
• We should verify that the resulting dependency already existed before the

change

• An exact algorithm will be given in the recitation

Additional Dependency
Types

• Relational schemas may include additional
dependency types
–Multivalued dependencies
• Here, there may be multiple different values of Y for the same

values of X, yet the values of X fix the set of values for Y

– Inclusion dependencies
• This types of dependency relates between the values of

attributes in two relations in the schema
• E.g., in the train operation S_Name (Serves) S_Name (Station)

• In this course, we focus on design considerations
that follow from functional dependencies only

	Slide 1
	Database Design Process
	Database Design Process - continued
	Schema Decomposition- reminder
	Continued
	Functional Dependencies - Informally
	ERD Represents Functional Dependencies
	Are the Schema Obtained by ERD Always the Best?
	Another Comment
	Anomalies in Inadequate Schema Design
	To Decompose or not to Decompose
	Dependencies and Decomposition
	Slide 13
	Functional Dependencies
	Functional Dependencies - continued
	Example
	A Dependency Following From a Set of Dependencies
	Keys
	Inferring Functional Dependencies
	Trivial Functional Dependencies
	An Example – the Insertion Rule
	Proof of the Insertion Rule
	Another Example - Transitivity
	Armstrong’s Axioms
	Soundness and Completeness
	Additional Inference Rules
	Proof of the Unification Rule
	Closure of an Attributes Set
	Completeness of Armstrong’s Axioms
	Completeness Proof – Example
	A Simple Algorithm for Computing the Closure
	Execution Example
	An Improved Closure Algorithm
	Closure of Dependency Sets
	Closure Comparisons
	Covers and Minimal Covers
	The Basic Idea for Finding Minimal Covers
	Additional Dependency Types

